Harekaze mini CTF 2021

Challenge Name Tags
first exam xor
sage training matrix rsa
mulmulmulti-prime RSA rsa
lost key rsa

first exam

import base64
import random 
from flag import flag 
from Crypto.Util.number import long_to_bytes, bytes_to_long

flag = base64.b64encode(flag)
flag = bytes_to_long(flag)
key = random.randrange(flag)
flag = flag ^ key
print(f"{key = }")
print(f"{flag = }")

solution

Observe that we get both the key and the flag XORed with the key. We can therefore solve this if we take the inverse of XOR, but since XOR is self-inverse, the inverse of XOR is XOR itself.

Therefore, if we XOR the key with the flag, we should get the original flag.

from Crypto.Util.number import long_to_bytes
key = 407773567691797768945309646881381330143924911048532252374484400956007416406007936505301187512369384531883020224488253602523154102140950477859193
flag = 1392812161183976577227166142672085037819799462496681473937900208451109718213256601589927195482395914799893761610554140977947503369343069077952836
print(long_to_bytes(key ^ flag))
# HarekazeCTF{OK_you_can_join_wizardry_school}

Flag: HarekazeCTF{OK_you_can_join_wizardry_school}

sage training

from Crypto.Util.number import *
from flag import flag

flag = flag.encode('utf-8')
flag = bytes_to_long(flag)

p = getStrongPrime(512)
q = getStrongPrime(512)
n = p*q
e = 65537

m = matrix(Zmod(n), [
    [p, 0],
    [0, flag]
])

m = m^e

print("c =",list(m))
print("n =",n)
print("e =",e)

The matrix $m$

\[m = \begin{bmatrix} p & 0\\ 0 & flag\\ \end{bmatrix}\]

over $(\mathbb Z/n\mathbb Z)^*$ (basically, we take $\mod n$ for each element) is formed and then raised to the power of $e = 65537$.

solution

Recall that matrix multiplication of a 2x2 matrix ends up as:

\[\begin{bmatrix} a & b\\ c & d\\ \end{bmatrix} \begin{bmatrix} e & f\\ g & h\\ \end{bmatrix}= \begin{bmatrix} ae + bg & af + bh\\ ce + dg & cf + dh\\ \end{bmatrix}\]

If we replace $b, c, f$ and $g$ with 0, this becomes:

\[\begin{bmatrix} a & 0\\ 0 & d\\ \end{bmatrix} \begin{bmatrix} e & 0\\ 0 & h\\ \end{bmatrix}= \begin{bmatrix} ae + 0 & 0 + 0\\ 0 + 0 & 0 + dh\\ \end{bmatrix} = \begin{bmatrix} ae & 0\\ 0 & dh\\ \end{bmatrix}\]

Observe that then the top left element is equal to the product of the top left elements in all matrices, and the bottom right element is equal to the product of the bottom right elements in all of the matrices.

So, if we were to take the product of $e$ of the same matrix (exponentiation, like in the challenge!), we would get

\[m^e = \begin{bmatrix} p^e & 0\\ 0 & flag^e\\ \end{bmatrix}\]

We know that $c$ is equal to this value, how does this help us? Well, the encryption is very similar to RSA, so it might be a good idea to factor $n$ first.

How can we factor $n$ given $p^e \mod n$? Since $p$ is a factor of $n$, raising $p$ to the power of anything will always result in another multiple of $p$. Therefore, we can use the greatest common divisor algorithm to find $p$ and factor $n$.

We have $flag^e \mod n$ from the bottom right element of $c$, and we can factor $n$, so the rest is just standard RSA.

from Crypto.Util.number import long_to_bytes
from math import gcd

c = [(94705679004463284733541288053549635663983624426348082883911423652044420589882644740030824857964094373277293351421545117172457918484063609288563394969114856228940330220982203798491227942337707868513380987219942847139213839127934175216087451584996193094098370176337671205679032479708240220775365041028562298045, 0), (0, 14243811671300968907609174458855708829741032120754409000357686908873126315334915231420353855815283498571171729689334442024813021199910238276500626386134036150649025606319036019223959715867658461585221634071508142818645594816357236002650041503442624594820852244903155433016041077813314542285538820574629698950)]
n = 123658273021758657244926229590842169697216202161458868027271307824674005278002104678607018762498569110790554844101479136721968081586766904446085438475258864812618061595487772978115460674609635002737826341845366713797429237465562629770189347062332559337703309881797723858775511801114681134013841432780549606609
e = 65537

p = gcd(c[0][0], n)
q = n // p
phi = (p-1)*(q-1)
d = pow(e,-1,phi)
print(long_to_bytes(pow(c[1][1], d, n)))
# HarekazeCTF{which_do_you_like_mage_or_sage?}

Flag: HarekazeCTF{which_do_you_like_mage_or_sage?}

mulmulmulti-prime rsa

from sympy.ntheory.modular import crt
from Crypto.Util.number import *
from Crypto.Random.random import *
from flag import flag

flag = bytes_to_long(flag)

N = 1
num = 2
while N < flag:
    if isPrime(num):
        print(num)
        N *= num
    num += 1

p = getStrongPrime(512)
q = getStrongPrime(512)
N = N * p * q
e = 65537
c = pow(flag, e, N)

print("bit_length =", flag.bit_length())
print("c =", c)
print("e =", e)
print("N =", N)

The modulus $n$ is composed of two 512 bit primes, along with a suspiciously generated value $s$ composed of multiplying many small primes together. We are also given the bit length of $flag$.

solution

Notice that $s$ has many many small factors, and we know that $s$ is a factor of $n$ as well as being larger than the flag, so what we can effectively do in this case is work mod $s$. We’ll find $s$ by just chucking $n$ into FactorDB, to get a value of

N = 101711813138816844924236837117014535397962326595284001750280202679841694874264008030110521904988877540733288496933299638087626005351064797010220112569797363528290

Finally, we’ll do normal RSA decryption mod $s$, the only thing we need to watch out for is that we calculate the totient correctly. Luckily, we can just use sage’s builtin euler_totient function to do all the work for us.

from Crypto.Util.number import long_to_bytes

bit_length = 535
c = 6444384937952479446360543800306726693252997452825552613901755375099255166714791921303820142603050845604453415771813934605436773362180219243666255359716995456217503120584807127945079526447091871683834669804927783277541340212953733681665967741288390917442432418885663222080013261671274096066346531406665749671823431928515791704387207382571496076159703188939522942673142857854899106254676400171188528066441584894129954980506317784944539407501773216256651827692873203651175
e = 65537
N = 13105434584967797009222723925714056612973229654650200307281518067540513311350491750775580308761120670043385919352137451528084580772272083564644136982142743585238409901075466075590932718136237274538943262152033321299508243379729042658808185056276914453786554308920681089647171956781340126500826872053436182017911021212882822071757885385543985492728290224139575551494811781675324350095354476279621406379090030101147754502075514438702852559140941288066281245455568260855730
s = 101711813138816844924236837117014535397962326595284001750280202679841694874264008030110521904988877540733288496933299638087626005351064797010220112569797363528290
phi = euler_totient(s)
d = pow(e, -1, phi)
print(long_to_bytes(pow(c,d,s)))
# HarekazeCTF{Small_prime_numbers_give_a_large_amount_of_information}

Flag: HarekazeCTF{Small_prime_numbers_give_a_large_amount_of_information}

lost key

from Crypto.Util.number import *
from flag import flag

assert flag.startswith('HarekazeCTF{')

p = getStrongPrime(512)
q = getStrongPrime(512)
e = 65537
n = p*q

print("e =", e)

out = []
for char in flag:
    out.append(pow(ord(char), e, n))

print("cs =", out)

The flag is encrypted byte by byte using normal RSA with an exponent of 65537. Additionally, we are told that the flag begins with HarekazeCTF{. We are not given the public modulus $n$ however.

solution

There’s a pretty obvious flaw here that the flag is encrypted byte by byte, meaning there are only a very small number of values that this character can be, so if we had the modulus $n$, we could simply try all values for the byte until we get the message byte $m_i$ where $m_i^e = c_i$ .

However, we don’t know the modulus, so clearly there must be some way to recover it.

Consider the first byte of the message, $m_0$ and the corresponding ciphertext output $c_0$. We know that:

\[m_0 ^ e = c_0 \mod n\\\]

therefore removing the mod $n$

\[m_0^e = kn + c_0\\ m_0^e - c_0 = kn\]

which leaves us with a multiple of $n$. While we may not be able to feasibly factor this multiple of $n$ to get $n$, we can repeat this with the next byte to get another multiple of $n$. After this, we can once again take the greatest common divisor and we should hopefully get either $n$ or a very small factor multiplied by $n$, which we should be able to factor out.

After this, we can use the method above to brute byte by byte and recover the whole flag.

from math import gcd

e = 65537
cs = [107466974184702145841553115319664339451930120354255273379558301545144507867522177692766159895259859624597019715005555797296886281889980929155335051650180549267089493842162874438089885015009176408334472291993521164651083717243958338826627907485117225058962936487939446771769736790338807986944156168183749925840, 22170132985413848490531783256781545736605099405646311268035819648933711512452780485867743670267230573816424442101847710685057703148406327241405695594207932241067458449670531595183417759103156231396266753674309067947713122567002400734977976535077517990037756703231259947021113899161279426849577708990870731796, 53663607942106145324856505634900952366446957335671164130522298044915630458145599229549689140621749659760530223576029477516300914481873420175142570078712350791717712867102285434801786722800007966464203566632283618002607953903231805867079414136989142782468226938194605757261613478374151072690376532757078133321, 78365694503332388406635946375239888121420777373504294295865419461438621745194084475076351926821762908738314158329198338224524128225720604464503818477193486444917215723917379663727939853085907074473084404201033606252087766780407179445044519351567149421025751850087276632425870891542111663028730543465980924674, 39567326944456595185852131549239713048406760014375723185889668137264862184400625209347132385346771952845648844528249396652730647892825213067744420896877172327145941557401152582745524351689936262218846212578493068131068289265309178184007416700486534305431585962239171245639859026914854729185183441536829994448, 22170132985413848490531783256781545736605099405646311268035819648933711512452780485867743670267230573816424442101847710685057703148406327241405695594207932241067458449670531595183417759103156231396266753674309067947713122567002400734977976535077517990037756703231259947021113899161279426849577708990870731796, 19813692100529537153354196993326523976562641892144201032611152108085873052606047939028690660226848756109920448101177116200738248725456016292678619972016171389890378572323158782910627138681771345476065407747135093852592146230620163204742268175127348379246545806302445392839995057465044154985661763415511576915, 78365694503332388406635946375239888121420777373504294295865419461438621745194084475076351926821762908738314158329198338224524128225720604464503818477193486444917215723917379663727939853085907074473084404201033606252087766780407179445044519351567149421025751850087276632425870891542111663028730543465980924674, 86174815022656632820771815979848030991675449543858855538627033941173753463367127894912055591372276897893437851783103074453592833551980654440535422481459741992278375567239249797317101408951009372022666702935853551917516924695550542803023670435217018079474513312282507406283149149570227529130055453440693914269, 34251875649975900624684998660114519673055590184671553260809017427144567326208069656921748383189000068962382701183513219524420099538429211695861509218173285646800610926279186899385309575260233174554207858518171018524467259932783939780914383666363299484495396394572719367986255792364572940917973921563505448745, 131565416119678741014839407584223561029046554798152094981545060972297005833560091291352270034957409105706026993588528015469925505101518215167306761508868265349503115829224214417137323529658877240406238182480876219586238117250727275734913776571115032892387800565095870548323872910437611015057874077022397854569, 33815480616631994870971836193748318863481967291437195733184731238113087224536068722813183061889623448743955589560683228444185059481907449357122797432162322060345888743401660268629471753828654003871502320494829264202176494512254265921462146874076028450917313182158956935690037364855755650554334685083895867068, 86174815022656632820771815979848030991675449543858855538627033941173753463367127894912055591372276897893437851783103074453592833551980654440535422481459741992278375567239249797317101408951009372022666702935853551917516924695550542803023670435217018079474513312282507406283149149570227529130055453440693914269, 22170132985413848490531783256781545736605099405646311268035819648933711512452780485867743670267230573816424442101847710685057703148406327241405695594207932241067458449670531595183417759103156231396266753674309067947713122567002400734977976535077517990037756703231259947021113899161279426849577708990870731796, 95099633707955315716043240047400293694963134315000154040199470050231601405242009961859755101495775900057639022200903957701742294339381243957985339026218101877491848982588498409542234475170365427534871365999205545899955987813295825723156661870032606446201831406566509782752822453980726176243545245206321306611, 61737408873612311772259012945956027132119115853001428319314314241907109256087958061546894753960238529596491497895380913312688665343145849089453317670932134264932588320215145124014649556912773725283429180364888438085909811849894942273496160144562117923210401864041673502617134476745582453861241094401041426371, 37485766595063329601220010426289654518957990907265744685366993530789457867618132860365922990882718428604529600228984964032099232874374222460511687639517298884151530863424383708182801530978733652489831846323498206754579884274193819080226605792517323786300061084936119993024406419351880798350828583190079546746, 59091690178918932344514115276463450512958932813218218982632215803645007725632433228335302191336528516004719934113340911282619669674183859556622253453438037922671421657556268489672698428628687182827799202195089425797921832876631069571596552627010811297580734592673896904169615512613359321830332981475621145567, 32964168544968959353510698558874273000919323952493281946099962533506939498208181688742588300431696600292065238290546021981276177298765942076660797531804323237105854415918460873117281806730392017410543607418493227646928072616545409798293188005310381977095538544131859435136369660686059342461896512437530856807, 61737408873612311772259012945956027132119115853001428319314314241907109256087958061546894753960238529596491497895380913312688665343145849089453317670932134264932588320215145124014649556912773725283429180364888438085909811849894942273496160144562117923210401864041673502617134476745582453861241094401041426371, 122241563213741464979968719064140698493039933777834740175915217094995940174961699629250317112942306596094029381030668383544628596970576878357003221534342655655846033783236204331593159741855823643227766075516440483252852793627722169633097234643306786225936030578609417530459491093717173598465178880769316178044, 78365694503332388406635946375239888121420777373504294295865419461438621745194084475076351926821762908738314158329198338224524128225720604464503818477193486444917215723917379663727939853085907074473084404201033606252087766780407179445044519351567149421025751850087276632425870891542111663028730543465980924674, 7591190426273359761941616407328929144928770113517275241093950141596156063756282617198447983218357512532106065008192311376773134252922140464779836357119244223237739097375626981010120297527408789567509829201223532075894871619418707161080401002015173531204361217534542306210196443834027818745071731611178116102, 59091690178918932344514115276463450512958932813218218982632215803645007725632433228335302191336528516004719934113340911282619669674183859556622253453438037922671421657556268489672698428628687182827799202195089425797921832876631069571596552627010811297580734592673896904169615512613359321830332981475621145567, 22664583763981843374303022518005994035657097278137383178209854110549233704242068066967000507844722717498970431366228359404935646715495523018056691695416834096458747223276018066714685309994835448613781345301588650015402046268973716286992844357802566430554011962162835995086846984162192044523380375361802448218, 78365694503332388406635946375239888121420777373504294295865419461438621745194084475076351926821762908738314158329198338224524128225720604464503818477193486444917215723917379663727939853085907074473084404201033606252087766780407179445044519351567149421025751850087276632425870891542111663028730543465980924674, 53663607942106145324856505634900952366446957335671164130522298044915630458145599229549689140621749659760530223576029477516300914481873420175142570078712350791717712867102285434801786722800007966464203566632283618002607953903231805867079414136989142782468226938194605757261613478374151072690376532757078133321, 61737408873612311772259012945956027132119115853001428319314314241907109256087958061546894753960238529596491497895380913312688665343145849089453317670932134264932588320215145124014649556912773725283429180364888438085909811849894942273496160144562117923210401864041673502617134476745582453861241094401041426371, 70480713168757924539311929940667780467970587842818445025524418743197460964600164745651995347296980394486922827896626755652508161710436441737113055312895245602294855426377720530563018422908207244199085965533115922382801317795420570385448911898023773378170687812737983373672258357899304606026326252164454917380, 26047568072817115878494867894312437678288420198021118255975389413872187727029430115159427279201003925435414525092202995249992275528836448324452587202712175796867393292136562948141422497412486302036882434258287763076036896726821940579522223779143091983761347952513295578107694805378100425301153924104306062998, 91787381900269188260278447720373303310489148968304685923635762638358985393364143392777737095065187700401801078356045890609652133551386013705471578679563002092971756426764956920204023299288270929657689101848397216780612154256911542955444439856286288474258681128430625157922381056568239575747179508619880090383, 19776578673353144927275864184783861309264188793640244818775000749693721784434736580334695236818666332736203761370924654937786145968319601425120102369903413307379455581007799093158364222412674609843713510282895193311987501448419353965575002099029023833110758779437479839173501503297218293482700872628654297986, 125326845192544440509276282506481573283240724338574897067845504723648638309772954799371511105917309088905368831611594229377570680550345769210665683357475682304404835864851287315570998264956738569042205063390711870398463147536649068917477705868473769928436248823742587056194359108616016055142099517087868052076, 32964168544968959353510698558874273000919323952493281946099962533506939498208181688742588300431696600292065238290546021981276177298765942076660797531804323237105854415918460873117281806730392017410543607418493227646928072616545409798293188005310381977095538544131859435136369660686059342461896512437530856807, 91787381900269188260278447720373303310489148968304685923635762638358985393364143392777737095065187700401801078356045890609652133551386013705471578679563002092971756426764956920204023299288270929657689101848397216780612154256911542955444439856286288474258681128430625157922381056568239575747179508619880090383, 61737408873612311772259012945956027132119115853001428319314314241907109256087958061546894753960238529596491497895380913312688665343145849089453317670932134264932588320215145124014649556912773725283429180364888438085909811849894942273496160144562117923210401864041673502617134476745582453861241094401041426371, 91787381900269188260278447720373303310489148968304685923635762638358985393364143392777737095065187700401801078356045890609652133551386013705471578679563002092971756426764956920204023299288270929657689101848397216780612154256911542955444439856286288474258681128430625157922381056568239575747179508619880090383, 19776578673353144927275864184783861309264188793640244818775000749693721784434736580334695236818666332736203761370924654937786145968319601425120102369903413307379455581007799093158364222412674609843713510282895193311987501448419353965575002099029023833110758779437479839173501503297218293482700872628654297986, 78365694503332388406635946375239888121420777373504294295865419461438621745194084475076351926821762908738314158329198338224524128225720604464503818477193486444917215723917379663727939853085907074473084404201033606252087766780407179445044519351567149421025751850087276632425870891542111663028730543465980924674, 61737408873612311772259012945956027132119115853001428319314314241907109256087958061546894753960238529596491497895380913312688665343145849089453317670932134264932588320215145124014649556912773725283429180364888438085909811849894942273496160144562117923210401864041673502617134476745582453861241094401041426371, 131040946974245026675658058355729944120000121321870000188404709281435584116278394991809905119413703272844512311536278017673800410331882203288245095027071614357027112724940054197254425819803021685988771514425910034927629090391726496207856325205247386443488436597264105916073735204891428125878570620071016241142, 32964168544968959353510698558874273000919323952493281946099962533506939498208181688742588300431696600292065238290546021981276177298765942076660797531804323237105854415918460873117281806730392017410543607418493227646928072616545409798293188005310381977095538544131859435136369660686059342461896512437530856807, 51881903993917641483997323850869811987536038225111627485870643872052008803086447178754190907042703266291567337065800056687478280445329593338406909415012963680420370144400172847215701319544343476968467495864151008758153702721097854774586711217305181423901628447556759613107726842767091009348289250122189785036, 119068023942915123834453890801615386465501339394239797127627292458405364408652779944528299230385822484839542992300412357529700493946856868435526246881940439551516659994051777777890838403084888735602598147329910405072187829956484467108868728797474058963491292723955648893332590334862441379387587421054617352375, 26047568072817115878494867894312437678288420198021118255975389413872187727029430115159427279201003925435414525092202995249992275528836448324452587202712175796867393292136562948141422497412486302036882434258287763076036896726821940579522223779143091983761347952513295578107694805378100425301153924104306062998, 7591190426273359761941616407328929144928770113517275241093950141596156063756282617198447983218357512532106065008192311376773134252922140464779836357119244223237739097375626981010120297527408789567509829201223532075894871619418707161080401002015173531204361217534542306210196443834027818745071731611178116102, 61737408873612311772259012945956027132119115853001428319314314241907109256087958061546894753960238529596491497895380913312688665343145849089453317670932134264932588320215145124014649556912773725283429180364888438085909811849894942273496160144562117923210401864041673502617134476745582453861241094401041426371, 108623843147477631119786732455662776965429219466020757714020187646998446057803775748746530453769487275081577395650842333746842202866631361612598186542004712441099158759758755509018326899678450576264260147179759845904840404687049322108190291649207031114338018219438814789866476631689164384325667004478217180777, 95099633707955315716043240047400293694963134315000154040199470050231601405242009961859755101495775900057639022200903957701742294339381243957985339026218101877491848982588498409542234475170365427534871365999205545899955987813295825723156661870032606446201831406566509782752822453980726176243545245206321306611, 133351192310202563419426901323994384713440205208151868715643142935400012258411897257974968750050191281830595418066271226357824322914122125910498597975000929812150922805102417484457821873962051137397158246187719558420161623509563016907599978340865914055121915450412988237550455073879054425886488125963620347686, 61737408873612311772259012945956027132119115853001428319314314241907109256087958061546894753960238529596491497895380913312688665343145849089453317670932134264932588320215145124014649556912773725283429180364888438085909811849894942273496160144562117923210401864041673502617134476745582453861241094401041426371, 131040946974245026675658058355729944120000121321870000188404709281435584116278394991809905119413703272844512311536278017673800410331882203288245095027071614357027112724940054197254425819803021685988771514425910034927629090391726496207856325205247386443488436597264105916073735204891428125878570620071016241142, 53663607942106145324856505634900952366446957335671164130522298044915630458145599229549689140621749659760530223576029477516300914481873420175142570078712350791717712867102285434801786722800007966464203566632283618002607953903231805867079414136989142782468226938194605757261613478374151072690376532757078133321, 105556932542245217837514115055775462864903512903809995567283778630584585678106941149852343294250017922855045081349459579094317034729691863434432162931660961638290043282138627957649917234937135249663297808688852822695562463651780284273851153820189241714031472163530769144140864209408438325377119537941221960531, 22664583763981843374303022518005994035657097278137383178209854110549233704242068066967000507844722717498970431366228359404935646715495523018056691695416834096458747223276018066714685309994835448613781345301588650015402046268973716286992844357802566430554011962162835995086846984162192044523380375361802448218, 22170132985413848490531783256781545736605099405646311268035819648933711512452780485867743670267230573816424442101847710685057703148406327241405695594207932241067458449670531595183417759103156231396266753674309067947713122567002400734977976535077517990037756703231259947021113899161279426849577708990870731796, 91787381900269188260278447720373303310489148968304685923635762638358985393364143392777737095065187700401801078356045890609652133551386013705471578679563002092971756426764956920204023299288270929657689101848397216780612154256911542955444439856286288474258681128430625157922381056568239575747179508619880090383, 78365694503332388406635946375239888121420777373504294295865419461438621745194084475076351926821762908738314158329198338224524128225720604464503818477193486444917215723917379663727939853085907074473084404201033606252087766780407179445044519351567149421025751850087276632425870891542111663028730543465980924674, 61737408873612311772259012945956027132119115853001428319314314241907109256087958061546894753960238529596491497895380913312688665343145849089453317670932134264932588320215145124014649556912773725283429180364888438085909811849894942273496160144562117923210401864041673502617134476745582453861241094401041426371, 39567326944456595185852131549239713048406760014375723185889668137264862184400625209347132385346771952845648844528249396652730647892825213067744420896877172327145941557401152582745524351689936262218846212578493068131068289265309178184007416700486534305431585962239171245639859026914854729185183441536829994448, 78365694503332388406635946375239888121420777373504294295865419461438621745194084475076351926821762908738314158329198338224524128225720604464503818477193486444917215723917379663727939853085907074473084404201033606252087766780407179445044519351567149421025751850087276632425870891542111663028730543465980924674, 37485766595063329601220010426289654518957990907265744685366993530789457867618132860365922990882718428604529600228984964032099232874374222460511687639517298884151530863424383708182801530978733652489831846323498206754579884274193819080226605792517323786300061084936119993024406419351880798350828583190079546746, 54654851876914080966669294072266680316237257314112763522717957624090555990759711312831465420820115888060496319530663148955963721935388528488503095888463911956642207510234857634578445323935685115331866533375908740782162677968051666308084412334476185841082309379065946002682963601103366953276426988653294184985, 42482427773147130194812689536913368638500081237478535489659215264193263428770540828147841848358274276495344365420108498381423756998877818209503381681969582766793835586739511090517781184229755174548633034965819780902871349417908442111735773596392436160814727974903411429784536931401566107378581772146035766032, 35930567221176949983032393471537465956255142659604274746127055228630351918767533995190245953000208387959040650822605531305590422970245280265227270608180544226270924727120053380823893678184112932417170980296052271050084089289663890989780614126562039368255291578422422201128945232924297966192833485833017989673, 23143986891216249914663826063115820607206746945143883358014118079713956430178113457314904759546411358799835088875030074243573599227417981305876359711490612127320931332708264875195350899805210021457591886105523051676279929638131079316059284303837762361507811984602430228290510398571565718816739452416463824733]

m0, m1 = list(b"Ha")
kn1 = pow(m0, e) - cs[0]
kn2 = pow(m1, e) - cs[1]
n = gcd(kn1, kn2)
assert pow(m0, e, n) == cs[0]

lookup = dict({(pow(byte, e, n), byte) for byte in range(128)}) # lookup table to speed things up a bit
flag = bytes([lookup[ct] for ct in cs])
print(flag)
# HarekazeCTF{Can_you_Recover_with0ut_the_public_4nd_pr1vate_keys!?}

Flag: HarekazeCTF{Can_you_Recover_with0ut_the_public_4nd_pr1vate_keys!?}

ASIS CTF Finals 2021